PROPERTIES OF NEURAL PROCESSES AND EFFICIENCY OF BIOLOGICAL FEEDBACK TRAINING
Table of contents
Share
QR
Metrics
PROPERTIES OF NEURAL PROCESSES AND EFFICIENCY OF BIOLOGICAL FEEDBACK TRAINING
Annotation
PII
S0205-95920000616-4-1
Publication type
Article
Status
Published
Abstract
Correlation between properties of man’s neural processes and efficiency of alpha- and beta-2 frequencies power control in electroencephalogram (EEG) in symmetric frontal and occipital regions of brain in the framework of four scenarios based on biological feedback has been studied. Efficiency of learning is found to be determined by person’s individual peculiarities. Correlation between balance of neural processes and training rate has been revealed. Persons with different basic properties of neural processes use different strategies for electric activity control in their own brains.
Keywords
electroencephalography, biological feedback, balance of neural processes, power spectrum.
Date of publication
04.03.2013
Number of purchasers
1
Views
488
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References



Additional sources and materials


  1. Asvaduryan A.A. Issledovanie vzaimosvyazi psikhologicheskikh, nadezhnostnykh i ehlektroehntsefalograficheskikh kharakteristik cheloveka-operatora: Avtoreferat diss. … kand. biol. n. Rostov-na-Donu, 1991.
  2. Batuev A.S. Vysshie integrativnye sistemy mozga. L.: Nauka, 1981.
  3. Belyaeva E.R. Individual'nye osobennosti prostranstvennoj sinkhronizatsii biopotentsialov golovnogo mozga v zavisimosti ot svojstva sily nervnoj sistemy // Voprosy psikhologii. 1981. № 6. S. 107-110.
  4. Vysochin Yu.V. Prichiny i mekhanizmy perenapryazheniya i zabolevaniya serdtsa pri raznykh vidakh sportivnoj deyatel'nosti // Sport i zdorov'e natsii. Sbornik nauchnykh trudov. SPb., 2002. S. 9-36.
  5. Vysochin Yu.V., Denisenko Yu.P. Fiziologicheskie mekhanizmy povysheniya ehffektivnosti podgotovki futbolistov. Kazan': Kazanskij gosudarstvennyj universitet, 2003.
  6. Vysochin Yu.V., Denisenko Yu.P., Gordeev Yu.V. Povyshenie funktsional'nykh vozmozhnostej organizma sportsmenov s pomosch'yu biologicheskoj obratnoj svyazi // Fiziologiya cheloveka. 2005. T. 31. № 3. S. 93-99.
  7. Golubeva E.A., Izyumova S.A., Trubnikova R.S., Pechenkov V.V. Svyaz' ritmov ehlektroehntsefalogrammy s osnovnymi svojstvami nervnoj sistemy // Problemy differentsial'noj psikhofiziologii. Ehlektrofiziologicheskie issledovaniya osnovnykh svojstv nervnoj sistemy. M.: Pedagogika, 1974. S. 160-174.
  8. Gorev A.S., Panova E.N. Ehffektivnost' BOS-treninga regulyatsii funktsional'nogo sostoyaniya v zavisimosti ot individual'nykh psikhologicheskikh kharakteristik // Fiziologiya cheloveka. 2009. T. 35. № 5. S. 25-31.
  9. Kiroj V.N. Ehlektroehntsefalografiya. Rostov-na-Donu: RGU, 1998.
  10. Kiroj V.N. Interfejs mozg-komp'yuter. Rostov-na-Donu, 2011.
  11. Kropotov Yu.D., Ponomarev V.A., Grin'-Yatsenko V.A. Metod EhEhG bioupravleniya v lechenii sindroma defitsita vnimaniya i giperaktivnosti u detej // Fiziologiya cheloveka. 2001. T. 27. № 3. S. 5.
  12. Kuchkin S.N. Bioupravlenie v meditsine i fizicheskoj kul'ture. Volgograd: Volgogradskaya gosudarstvennaya akademiya fizicheskoj kul'tury, 1988. S. 41-44.
  13. Makarenko N.V., Voronovskaya V.I., Kovtun T.V., Panchenko V.M. Ehlektroehtsefalograficheskie korrelyaty vremennykh kharakteristik prostykh sensornykh reaktsij u lyudej s raznym urovnem funktsional'noj podvizhnosti nervnykh protsessov // Fiziologiya cheloveka. 1992. T. 18. № 3. S. 33-41.
  14. Nikishena I.S., Ponomarev V.A., Grin'-Yatsenko V.A., Kropotov Yu.D. Topografiya izmenenij spektral'noj moschnosti EhEhG v khode seansa biologicheskoj obratnoj svyazi po beta-ritmu // Fiziologiya cheloveka. 2004. T. 30. № 4. S. 19-24.
  15. Pavlova L.P., Romanenko A.F. Sistemnyj podkhod k fiziologicheskomu issledovaniyu mozga cheloveka. L.: Nauka, 1988.
  16. Teplov B.M., Nebylitsyn V.D. Svyaz' mezhdu chuvstvitel'nost'yu i siloj nervnoj sistemy // Fiziologiya vysshej nervnoj deyatel'nosti: Rukovodstvo po fiziologii. M.: Nauka, 1971. C. 234-243.
  17. Fedotchev A.I., Bondar' A.T. Metod dvojnoj obratnoj svyazi ot EhEhG ritmov patsienta dlya korrektsii funktsional'nykh rasstrojstv, vyzvannykh stressom // ZhVND. 2008. T. 58. № 3. S. 376-381.
  18. Birbaumer N., Ghanayim N., Hinterberger T., Iversen I., Kotchoubey B., Kübler A., Perelmouter J., Taub E. & Flor H. A spelling device for the paralysed // Nature. 1999. V. 398. P. 297-298.
  19. Birbaumer N., Kubler A., Ghanayim N., Hinterberger T., Perelmouter J., Kaiser J., Iversen I., Kotchoubey B., Neumann N. & Flor H. The thought translation device (TTD) for completely paralyzed patients // IEEE Trans Rehabilitation Engineering. 2000. № 8. P. 190- 192.
  20. Curran E.A., Stokes M.J. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems // Brain Cognition. 2003. V. 51. P. 326-336.
  21. Dornhege G., Millán J.R., Hinterberger T., McFarland D. & Müller K.-R. (Eds.) Toward Brain-Computer Interfacing. Cambridge, MA: MIT Press, 2007. P. 43-48.
  22. Edlinger G., Harkam W., Niedermayer I., Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? // Neural Systems and Rehabilitation Engineering. 2003. V.11. I. 2. P. 145-147.
  23. Genevieve D. Les therapies de langage // Bull. Audio Phononol: Ann Sci France. 1990. V. 6. № 1. P. 7-9.
  24. Ince N.F., Tewfik A.H. & Arica S. Extraction subject-specific motor imagery time-frequency patterns for single trial EEG classification // Computers in Biology and Medicine. 2007. V. 37. I. 4. P. 499-508.
  25. Jacobson E. Progressive Relaxation. Chicago: University of Chicago Press, 1938.
  26. Kiroy V.N., Warsawskaya L.V. & Voynov V.B. EEG after prolonged mental activity // International Journal of Neuroscience. 1996. V. 85. P. 31-43.
  27. Lubar J.F., Swatwood M.O., Swatwood J.N. & Timmermann D.L. Quantitative EEG and auditory event-related potentials in the evaluation of attention-deficit/hyperactivity disorder: effects of methylphenidate and implications for neurofeedback training // Journal of Psychoeducational Assessment. ADHD Special. 1995. P. 143-160.
  28. Millán J.R., Mouritio J., Franze M., Cincotti F., Varsta M., Heikkonen J. & Babiloni F. A local neural classifier for the recognition of EEG patterns associated to mental tasks // IEEE Trans Neural Network. 2002. V. 13. P. 678-686.
  29. Model D. & Zibulevsky M. Learning subject-specific spatial and temporal filters for single-trial EEG classification // NeuroImage. 2006. V. 32. № 4.1. P. 1631-1641.
  30. Neuper C., Müller G., Kübler A., Birbaumer N. & Pfurtscheller G. Clinical application of an EEG-based brain-computer interface: A case study in a patient with severe motor impairment // Clinical Neurophysiology. 2003. V. 114. № 3. P. 399-409.
  31. Perelmouter J. & Birbaumer N. A binary spelling interface with random errors // IEEE Trans Rehabilitation Engineering. 2000. V. 8. P. 227-232.
  32. Pfurtscheller G., Neuper C., Guger C., Harkam W., Ramoser R., Schlögl A., Obermaier B. & Pregenzer M. Current Trends in Graz Brain-computer Interface (BCI) // IEEE Trans Rehabilitation Engineering. 2000. V. 8. № 2. P. 216-219.
  33. Pribram K.H. The far frontal cortex as executive processor: proprieties, priorities and pratical inference / Downward Processes in the Perception Representation Mechanisms. (Eds) Taddei-Ferretti Cl., Musio K. Singapore, New Jersey, London, Hong Kong: World Science, 1998. P. 546-578.
  34. Rossiter Th.R. & LaVaque Th.J. A comparison of EEG biofeedback and psychostimulants in treating attention deficit hyperactivity disorders // Journal of Neurotherapy. 1995. V. 1. Is. 1. P. 48-53.
  35. Vidal J.J. Towards direct brain-computer communication // Annual Review Biophysics & Bioengineering. 1973. V. 2. P. 157-180.
  36. Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G. & Vaughan T.M. Brain-computer interfaces for communication and control // EEG & Clinic Neurophysiology. 2002. V. 113. № 6. P. 767-791.
  37. Yoon J.W., Roberts St.J., Dyson M. & Gan J.Q. Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling // Neural Networks. Corrected Proof. 2009. P. 1286- 1294.

Comments

No posts found

Write a review
Translate